Crystal Orientation Angular Resolution with Precession Electron Diffraction
نویسندگان
چکیده
منابع مشابه
Aberration-corrected precession electron diffraction
Precession electron diffraction (PED) is a promising technique for collecting high quality diffraction patterns for rapid nanoscale structural characterization [1]. It is able to reduce dynamical scattering effects, improving the interpretability of diffraction intensities over those obtained by conventional electron diffraction techniques. When used on a microscope that can produce a fine prob...
متن کاملPrecession electron diffraction – a topical review
In the 20 years since precession electron diffraction (PED) was introduced, it has grown from a little-known niche technique to one that is seen as a cornerstone of electron crystallography. It is now used primarily in two ways. The first is to determine crystal structures, to identify lattice parameters and symmetry, and ultimately to solve the atomic structure ab initio. The second is, throug...
متن کاملOn the alignment for precession electron diffraction.
Precession electron diffraction has seen a fast increase in its adoption as a technique for solving crystallographic structures as well as an alternative to conventional selected-area and converged-beam diffraction methods. One of the key issues of precession is the pivot point alignment, as a stationary apparent beam does not guarantee a fixed pivot point. A large precession tilt angle, along ...
متن کاملStructure refinement from precession electron diffraction data.
Electron diffraction is a unique tool for analysing the crystal structures of very small crystals. In particular, precession electron diffraction has been shown to be a useful method for ab initio structure solution. In this work it is demonstrated that precession electron diffraction data can also be successfully used for structure refinement, if the dynamical theory of diffraction is used for...
متن کاملPrecession electron diffraction 1: multislice simulation.
Precession electron diffraction (PED) is a method that considerably reduces dynamical effects in electron diffraction data, potentially enabling more straightforward solution of structures using the transmission electron microscope. This study focuses upon the characterization of PED data in an effort to improve the understanding of how experimental parameters affect it in order to predict favo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Microscopy and Microanalysis
سال: 2016
ISSN: 1431-9276,1435-8115
DOI: 10.1017/s1431927616003354